Die Methode zur Risikobewertung und Risikominimierung bei PV Anlagen

PV Magazine Webinar: TÜV Rheinland - Die CNP Methode für die monetäre Bewertung des Schadensrisikos bei Modulen und Verkabelung

06 November 2019

Magnus Herz
Project Manager
TÜV Rheinland
+49 221 806 4946
Magnus.Herz@de.tuv.com
TÜV Rheinland – Solar Energy Worldwide

Quality, safety and reliability around the world

>35 years of experience in PV

20,000 employees

250+ Solar Experts

6 PV Laboratories

> 20 GW inspected PV projects
Content

Cost Priority Number

Risk Identification

Risk Assessment

Risk Mitigation

Conclusion
OBJECTIVES

- Reduce the monetary risks in PV projects
- Standardized Reproducible and transparent technique
- Reacting to failures and preventing failures at a reasonable cost
- Make the best decisions from a cost-benefit perspective

Severity Criteria

<table>
<thead>
<tr>
<th>Rank</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Performance loss < 0.5%</td>
</tr>
<tr>
<td>2</td>
<td>Performance loss < 1%</td>
</tr>
<tr>
<td>3</td>
<td>Performance loss < 3%</td>
</tr>
<tr>
<td>4</td>
<td>Performance loss < 5%</td>
</tr>
<tr>
<td>5</td>
<td>Performance loss < 10%</td>
</tr>
<tr>
<td>6</td>
<td>Performance loss < 25%</td>
</tr>
<tr>
<td>7</td>
<td>Performance loss > 25%</td>
</tr>
<tr>
<td>8</td>
<td>Safety risk without perf. loss</td>
</tr>
<tr>
<td>9</td>
<td>Safety risk with perf. loss</td>
</tr>
<tr>
<td>10</td>
<td>Death, fire, total loss</td>
</tr>
</tbody>
</table>

FMEA Rating of PV Module Failures

- Module frame damaged
- Snail tracks
- Plant components not working
- Delamination of PV module
- Unprotected connector
- Heavy soiling of PV module
- Module unprotected against reverse current
- Module back side damaged
- Connector not properly connected
- Breakage of front glass

Initial Risk → Avoid → Mitigate → Transfer → Residual Risk
DEVELOPMENTS

- First approach to implement a cost-based FMEA to the PV sector
- Based on statistical analysis and assumptions
- Cost of loss from system downtime (C_{down})
- Cost for detection and mitigation (C_{fix})
- Further factors: occurrence, irradiance, power loss, PPA, costs

IMPROVEMENTS

- Updated and adapted to the needs of O&M operators
- Identify the adjustments needed to a fully automatized approach
- Key Performance Indicators (KPIs) were revisited and reformulated:
 - Detect time
 - Response time
 - Repair time

\[\text{CPN} = \frac{t_{\text{detect}} + t_{\text{response}} + t_{\text{repair}}}{t_{\text{ref}}} \times \frac{n_{\text{fail}} \times C_{\text{PL}} \times M \times P_{\text{nom}} \times y \times \text{PPA}}{n_{\text{comp}} \times P_{\text{nom}} \times n_{\text{years}}} + \frac{(C_{\text{det}} + C_{\text{rep}} + C_{\text{sub}} + C_{\text{transp}}) \times n_{\text{fail}} + t_{\text{fix}} \times C_{\text{lab}} \times n_{\text{fail}}}{P_{\text{nom}} \times n_{\text{years}}} \]
CPN = \(\frac{t_{detect}+t_{response}+t_{repair}}{t_{ref}} \times \frac{n_{fail} \times C_{PL} \times M \times P_{nom} \times y \times PPA}{n_{comp} \times P_{nom} \times n_{years}} + \frac{(C_{det}+C_{rep}+C_{sub}+C_{transp}) \times n_{fail} + t_{fix} \times C_{lab} \times n_{fail}}{P_{nom} \times n_{years}} \)
Risk Identification – Technical Risk Matrix

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Procurement</th>
<th>Construction</th>
<th>Acceptance</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabling/Connectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combiner Boxes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Delamination
- Glass breakage
- Backsheet brittleness
- Backsheet “chalking”
- PID
- LeTID
- Cable corrosion
- Cross-connection

www.solarbankability.org

Potential induced degradation

LeTID
Risk Assessment: Potential induced Degradation (PID)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Failure Rate plants</th>
<th>Failure Rate components</th>
<th>Initial Power Loss</th>
<th>Power Degradation rate</th>
<th>Occurrence degradation rate</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>5%</td>
<td>5%</td>
<td>0.10 €/kWh</td>
</tr>
</tbody>
</table>

- **CPN (5y) = 7€/kWp**
- **Revenue Loss = 70k€**
- **0.7% of investment**

- **CPN (10y) = 25€/kWp**
- **Revenue Loss = 250k€**
- **2.5% of investment**

Example:
- 10 MW PV Portfolio (100 x 100kW)
- 10 PID affected PV plants
- CAPEX ~10 Mio€
Risk Mitigation: Potential induced Degradation (PID)

Mitigation

- **Mitigation cost (year 0)**: 0.6 €/kWp
- **CPN after 10 years**: ~1 €/kWp
- **Savings after 10 years**: ~24 €/kWp

PID Box

- **Mitigation cost (year 0)**: 2 €/kWp
- **CPN after 10 years**: 9 €/kWp
- **Savings after 10 years**: 16 €/kWp

Graphs and Diagrams

- **CPN Losses PID**
 - PID = Potential Induced degradation
 - Mitigated PID with preventive Mitigation

- **Detection time**, **Response time**, **Repair time**

- **Year of Operation vs. Normalized Energy**
 - No-Mitigation vs. PID Box
Risk Assessment: Light and elevated Temperature Induced Degradation (LeTID)

Example:
10 MW PV Portfolio (100 x 100kW)
20 LeTID affected PV plants
CAPEX ~10 Mio€

Table: LeTID Test Mitigation Costs

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Mitigation cost (year 0)</th>
<th>CPN after 10 years</th>
<th>Savings after 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeTID Test</td>
<td>2 €/kWp</td>
<td>2 €/kWp</td>
<td>1 €/kWp</td>
</tr>
</tbody>
</table>

Diagram:
- **Light elevated Temperature induced degradation (LeTID)**
- **Light induced degradation (LID)**
- **Light cycles of 5 kWh/m², 50°C ± 10°C**
- **Temperature chamber cycles of 162 hrs, 75°C, current flow of I_{sc}^{Lmpp}**

Table: Risk Assessment

<table>
<thead>
<tr>
<th>Risk</th>
<th>Failure Rate plants</th>
<th>Failure Rate components</th>
<th>Max. Power Loss</th>
<th>PPA</th>
<th>CPN after 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeTID</td>
<td>20%</td>
<td>100%</td>
<td>4%</td>
<td>0.10 €/kWh</td>
<td>3 €/kWp</td>
</tr>
</tbody>
</table>
Risk Mitigation: CPN Results - PV Modules

MITIGATION MEASURES

- Component testing
- Design review
- Qualification of EPC
- Monitoring system
- Inspection
- Spare part management

Modules - top 10 risks

<table>
<thead>
<tr>
<th>Risk Description</th>
<th>CPN Reference without MM</th>
<th>CPN Best MM Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improperly installed</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Glass breakage</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>PID = Potential induced degradation</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Defective backsheet</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Delamination</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Hotspot</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Soiling</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Shading</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Failure bypass diode</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Overheating junction box</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data collection is biased by
- Locations
- Technologies
- Reason for inspections
Risk Mitigation: Random verification tests at third party laboratory

In TÜV Rheinland’s laboratory

- Highly Accurate STC Measurement
- EVA Gel Content & Peel-Off
- Thermal Cycling / Damp Heat Potential induced degradation
- Mechanical Load Test
- Light Induced Degradation
- Thermographic Inspection
- UV Test
- Hail Test
Risk Mitigation through Quality Assurance Concept for PV Power Plants

Development
- Energy yield prediction, glare assessment
- Technical rating of PV module and PV inverter suppliers
- Pre-production factory inspection of - PV modules - Components (inverter, transformer, mounting system, cables, etc.)
- Pre-production testing of project-relevant equipment (reliability and performance)

Procurement
- During production inspection (DUPRO), pre-shipment inspections of PV modules
- During production tests of PV modules
- During production factory acceptance test (FAT) of inverters

Construction and Commissioning
- Joint construction supervision, project monitoring (onsite)
- Confirmation of mechanical completion
- Grid conformity assessment

Confirmation of Acceptance
- Confirmation of provisional acceptance
- Confirmation of final acceptance
- Certification (optional)
The CPN Method gives an indication of the economic impact of a failure due to downtime and investment cost. A professional risk management strategy should become integral part of each PV investment.

Technical risks can be systematically classified in a Risk Matrix and need to be defined using a standardized nomenclature.

There is a strong need of risk mitigation measures in all stages of PV power plant investment. Mitigation measures, which are allow early detection are most effective.
Thank you for your attention

TÜV Rheinland
Dipl.-Ing. Magnus Herz
Project Manager
+49 221 806 4946
Magnus.Herz@de.tuv.com

www.tuv.com/solar
PV Module Forum 2020

The world’s leading forum for PV module technologies and applications from 18th to 19th February 2020, TÜV Rheinland headquarter, Cologne/Germany

www.tuv.com/pv-module-forum